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Introduction: Let A be a central simple algebra over a field k of
characteristic different from 2.
The quadratic form x ∈ A 7→ TrdA(x2) ∈ k is called the trace form of

A, and is denoted by TA. This trace form has been studied by many au-
thors (cf.[L], [LM], [Ti] et [Se], Annexe §5 for example). In particular, these
classical invariants are well-known (loc.cit.). In [B], we have determined a
diagonalization of the trace form of cyclic algebras over fields such that the
cube of the fundamental ideal is trivial. In particular, this gives all trace
forms of central simple algebras over local fields and non formally real global
fields, since any algebra over such a field is cyclic. In this article, we give
a characterization of the trace form of a central simple algebra over a local
field or a global field in terms of determinant and signatures. We also show
that a quadratic form over a global field is isomorphic to a trace form if and
only if it is true locally. Then we give a necessary and sufficient condition
on trace forms to be isomorphic. Finally, we apply these results to describe

explicitly the elements of Br2(k) which can be written
n

2
[A], where A is a

central simple algebra of even degree n, when k is a local field or a global
field of characteristic different from 2.

Recalls and notation: If A is a central simple algebra over k, the ex-

ponent of A, denoted by expA, is the order of [A] in Br(k) and the index

of A, denoted by indA, is the degree of the division algebra which corre-
sponds to A. We know that expA divides the degree of A. If a, b ∈ k∗, we
denote by (a, b)k the corresponding quaternion algebra, or simply (a, b) if no
confusion is possible. We also use the same notation to design its class in
the Brauer group. If L/k is any field extension, set [A]L = [A ⊗ L]. Then
we have [(a, b)k]L = (a, b)L. Recall now the definition of a cyclic algebra.
Let L/k be a cyclic extension of degree n, σ a generator of Gal(L/k) and
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a ∈ k∗. The ring (a, L/k, σ) =
n−1⊕

i=0

Lei with the multiplication law en = a and

eλ = σ(λ)e, λ ∈ L is a central simple algebra, called a cyclic algebra.
If k is a local field, we know that indA =expA. Moreover, we get an

isomorphism invk : Br(k)
∼
→ Q/Z. Under this isomorphism,

s

n
(where

s and n are not necessarily relatively prime) corresponds to the class of
the cyclic algebra (πs, L/k, σ), where π is a uniformizing parameter, L/k
is the unique unramified extension (then cyclic) of degree n and σ the as-
sociated Frobenius automorphism. Moreover (πs, L/k, σ) is a division al-
gebra if and only if (s, n) = 1. We also set invC ≡ 0. Finally we define

invR : Br(R) → Q/Z by invR(−1,−1) =
1

2
. If k is a global field, we write

invp instead of invkp
for all prime p of k. Then we get the following exact

sequence 0 → Br(k) →
∑

Br(kp)
∑

invp

→ Q/Z → 0. Moreover, we know that
expA =indA =lcm(indA ⊗ kp). For more details, we refer to [W] or [CS].
Concerning central simple algebras over general fields, we refer to [D], [J] or
[Sc].
In the following, all the quadratic forms are non singular. If q is a quadratic
form over k, dimq is the dimension, detq ∈ k∗/k∗2 is the determinant and
signP q ∈ Z is the signature of q relatively to the ordering P , that is the
difference between the number of positive elements and the number of neg-
ative elements in any diagonalization of q. If k is a global field, each real
prime (if there is any) corresponds to a real embedding, then to an ordering
and vice versa. We will denote by signpq the signature of q relatively to the
ordering corresponding to this prime. If q '< a1, · · · , an >, the Hasse-Witt

invariant of q is given by w2(q) =
∑

i<j

(ai, aj) ∈ Br2(k). Thus, if L/k is any

field extension, we get w2(q)L = w2(q ⊗ L). Finally, we denote by H the
hyperbolic plane.

A. Trace forms of central simple algebras over a local field or a

global field.

In this section, we first show the following results:

Theorem 1: Let k be a local field and n ≥ 2 an even integer. Then a
quadratic form q over k is isomorphic to the trace form of a central simple
algebra of degree n if and only if the following conditions hold:

1. dimq = n2

2. detq = (−1)
n(n−1)

2
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Theorem 2: Let k be a global field of characterisitc different from 2, n ≥ 2
an even integer, and q a quadratic form over k. Then the following conditions
are equivalent:

(1) The quadratic form q is isomorphic to the trace form of a central simple
algebra over k of degree n

(2) q is isomorphic to a trace form locally everywhere, that is for all prime
p of k, q⊗kp is isomorphic to the trace form of a central simple algebra
of degree n over kp

(3) q satisfies the following conditions:

(i) dimq = n2

(ii) detq = (−1)
n(n−1)

2

(iii) signpq = ±n for all real prime p of k

These two theorems only deal with the case when n is even, because we know

that TA ' n < 1 >⊥
n(n− 1)

2
H if n is odd (cf.[Se], Annexe §5 for example).

Before proving these theorems, we recall some results about the classical
invariants of trace forms of central simple algebras:

Theorem 3: Let k be a field of characteristic different from 2, and let
A be a central simple algebra over k of degree n. Then we have:

1. dimTA = n2

2. detTA = (−1)
n(n−1)

2

3. We have signPTA = ±n for each ordering P , and signPTA = n if and
only if [A]kP

= 0, where kP is the real closure of (k, P )

4. If n = 2m ≥ 2, then w2(TA) =
m(m− 1)

2
(−1,−1) + m[A]

The three first statements can be found in [L], and the last one is proved in
[LM] or [Ti] for example .

Lemma: Let k be a local field, n = 2m ≥ 2 and A a central simple al-
gebra of degree n. Let (a, b) be the unique non zero element of Br2(k). Then
m[A] = (a, b) if and only if A is a division algebra.
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Proof of the lemma: We know that expA =ind A, then A is a divi-
sion algebra if and only if [A] has order n in Br(k), which is equivalent to
m[A] 6= 0, that is m[A] = (a, b) since (a, b) is the unique non zero element of
Br2(k).

Proof of theorem 1: According to the previous theorem, the two con-
ditions are necessary. We show that there are sufficient. It is well-known
that quadratic forms over k are determined up to isomorphism by dimen-
sion, determinant and Hasse-Witt invariant.

We have
m(m− 1)

2
(−1,−1) + w2(q) = (c, d), with (c, d) = 0 or (a, b).

Assume first that (c, d) = 0. In this case, set A = Mn(k).
Then the last statement of theorem 3 gives

w2(TA) =
m(m− 1)

2
(−1,−1) = w2(q). Thus the two quadratic forms q and

TA have the same invariants, so there are isomorphic.
Assume now that (c, d) = (a, b), and set A = (π, L/k, σ), where π is a uni-
formizing parameter of k, L/k is the unique unramified extension of degree n
and σ is the Frobenius automorphism. Then A is a division algebra of degree
n, then m[A] = (a, b) by the lemma. Now conclude as previously.

Proof of theorem 2: We first show that (2) and (3) are equivalent. If
p is a complex prime, it is clear that a quadratic form over kp is isomorphic
to a trace form if and only if (i) is satisfied. If p is a real prime, quadratic
forms are determined by dimension and signatures. By theorem 3, it follows
that a quadratic form over kp is isomorphic to a trace form if and only if (i)
et (iii) are satisfied. Finally, if p is a finite prime, theorem 1 implies that a
quadratic form over kp is isomorphic to a trace form if and only if (i) et (ii)
are satisfied. So we get the desired equivalence.
Now we show that (1) and (3) are equivalent. The three conditions are neces-
sary by theorem 3. In order to show that there are also sufficient, we consider
the two cases n ≡ 2 [4] and n ≡ 0 [4] separately.

• Assume first that n = 2m, with m odd.
Since k is a global field, every central algebra of exponent 2 is similar to a
quaternion algebra (it comes from the equality expA =indA).

So we can write
m(m− 1)

2
(−1,−1)k + w2(q) = (c, d)k.

Let p be a real prime of k.

If signpq = n, we have q ⊗ kp ' n < 1 >⊥
n(n− 1)

2
H.
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Then we easily get w2(q)kp
= w2(q ⊗ kp) =

m(m− 1)

2
(−1,−1)kp

.

If signpq = −n, we have q ⊗ kp ' n < −1 >⊥
n(n− 1)

2
H.

Then we have w2(q)kp
= w2(q ⊗ kp) = (

m(m− 1)

2
+ m)(−1,−1)kp

=
m(m− 1)

2
(−1,−1)kp

+ (−1,−1)kp
, since m is odd.

So we have signpq = n if and only if (c, d)kp
= 0.

Set A = Mm((c, d)k). Then signpTA = n if and only if (c, d)kp
= 0, so q and

TA have the same signatures. Moreover we get m[A] = (c, d)k since m is odd,
so the previous quadratic forms have the same Hasse-Witt invariants. By
assumption, dimensions and determinants are equal, so q and TA are isomor-
phic.

• Assume now that n = 2m, with m ≥ 2 even. First we construct a central
simple algebra over k, defining it locally everywhere and using the exact se-
quence recalled at the beginning.

As previously, set
m(m− 1)

2
(−1,−1)k + w2(q) = (c, d)k.

If p is a complex prime, we have (c, d)kp
= 0.

If p is a real prime such that signpq = n, we have already seen that

w2(q)kp
=

m(m− 1)

2
(−1,−1)kp

, so (c, d)kp
= 0.

If p is a real prime such that signpq = −n, we have seen that

w2(q)kp
= (

m(m− 1)

2
+ m)(−1,−1)kp

=
m(m− 1)

2
(−1,−1)kp

since m is

even in this case. So we have again (c, d)kp
= 0. Finally, the primes for

which (c, d)kp
6= 0 are finite. By Hilbert’s reciprocity law, the number r of

these primes is finite and even, and the set S of finite primes p such that
(c, d)kp

= 0 is infinite. Let T be the set of real primes for which the signature
of q is equal to −n, and let t be its cardinality.
If r = 0, set Bp1 = (πtm

p1
, Lp1/kp1, σp1) for a given p1 ∈ S (so we have

Bp = Mn(kp1) if t = 0) and Bp = Mn(kp) for all finite prime p 6= p1.
Suppose that r > 0 and choose p1, p2 ∈ S. Now set Bp1 = (πtm

p1
, Lp1/kp1, σp1)

and Bp2 = (π
n−r

n

p2
, Lp2/kp2, σp2). These algebras are not division algebras be-

cause r and n are even, and tm and n are both divisible by m. Then set
Bp = Mn(kp) for all primes in S − {p1, p2}.

So we have invp1 [Bp1] =
t

2
in all cases and invp2 [Bp2] =

n− r

n
.

If p is a finite prime, p /∈ S, set Bp = (π, Lp/kp, σp). The algebra Bp is then

a division algebra and invp[Bp] =
1

n
for each finite prime p /∈ S.
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Now set Bp = Mm((−1,−1)kp
) for all p ∈ T (in this case, we have

invp[Bp] =
1

2
) and set Bp = Mn(kp) for the other infinite primes.

By construction,
∑

invp[Bp] = 0 in Q/Z. Thus there exists some
[B] ∈ Br(k), where B is a division algebra, such that [B]kp

= [Bp] for all
primes of k. Since the algebras Bp have degree n, each index is a divisor of
n, so the index of B divides n (because it is the least common multiple of
the indices). Since B is a division algebra, we have indB =degB, so degB
divides n.
Then we set A = Mj(B), with j =

n

degB
.

Now we show that q ' TA. It suffices to prove that q ⊗ kp ' TA⊗kp
for

all primes of k. Then we get q ⊗ kp ' TA ⊗ kp for all primes of k, and we
obtain q ' TA. Notice that we have [A]kp

= [Bp].
If p is a complex prime, the isomorphism is clear. If p is a real prime, then
we have by construction [A]kp

= [Bp] = 0 if and only if signpq = n.
By theorem 3, q ⊗ kp and TA⊗kp

have the same signature, so there are iso-
morphic since the dimensions are equal.
Now we consider the case of finite primes. By construction, for every fi-
nite prime p ∈ S, Bp is not a division algebra, so m[A]kp

= m[Bp] = 0 by
the lemma. Since p ∈ S, we have (c, d)kp

= 0, so q ⊗ kp and TA⊗kp
have

the same Hasse-Witt invariant. Since their dimensions and their determi-
nants are equal, there are isomorphic. Finally if p is a finite prime such
that p /∈ S, we have (c, d)kp

6= 0 and Bp is a division algebra. If (ap, bp)
denotes the unique non zero element of Br2(kp), we have by the lemma
m[A]kp

= m[Bp] = (ap, bp) = (c, d)kp
. Now we conclude as previously and

this finishes the proof of theorem 2.

Remark: By theorem 2, if q is kp-isomorphic to the trace form of a central
simple algebra Ap over kp of degree n for all primes, then q is k-isomorphic to
the trace form of a central simple algebra A over k of degree n. Nevertheless,
it does not mean that A ⊗ kp ' Ap for all p. Indeed , it can happens that∑

invpAp 6= 0, so there is no central simple algebra over k which is similar
to Ap in Br(kp) for all primes, according to the exact sequence recalled at
the beginning. Since the degrees are equal, this is equivalent to say that the
isomorphism A⊗ kp ' Ap does not hold for all p.

Example: Assume that n ≡ 0 [8]. For all primes p of k, set qp = TAp
,

where Ap = Mn(kp) except for two primes p1 and p2 for which we set
Api

= (πpi
, Lpi

/kpi
, σpi

). Then we have w2(qp) = 0 if p 6= p1, p2 and
w2(qpi

) = (api
, bpi

) (it suffices to apply theorem 3 and the lemma).
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For all primes p, we have detqp = (−1)
n(n−1)

2 and the number of primes p for
which w2(qp) 6= 0 is finite and even. So there exists a quadratic form q over
k such that q ⊗ kp ' qp. (cf.[Sc], theorem 6.6.10). Thus this form q satisfies
q ⊗ kp ' TAp

. So we have q ' TA, but we cannot have A⊗ kp ' Ap because
∑

invp[Ap] =
2

n
.

We can explain the fact that it is always possible to find a suitable A observ-
ing that over a local field, there are many central simple algebras with the
same trace form. So we can choose some algebras Bp such that TBp

' TAp

for all primes and satisfying
∑

invp[Bp] = 0. More precisely, we have the
following proposition:

Proposition 1: Let k be a field of characteristic different from 2, and let A
and B be two central simple algebras of even degree n.

(1) If k is a local field, we have TA ' TB if and only if
(A is division algebra ⇐⇒ B is a division algebra)

(2) If k = R, we have TA ' TB if and only if A ' B

(3) If k is a global field, we have TA ' TB if and only if A⊗ kp and B ⊗ kp

satisfy the previous conditions over kp for all finite or real primes

Proof: If k is a local field, the Hasse-Witt invariants of TA et TB are equal
if and only if A and B satisfy the condition (1) by the lemma. Since their
dimensions and their determinants are equal, this is equivalent to TA ' TB.
If k = R, it suffices to notice that Mn(R) and Mm((−1,−1)R) are the only
central simple algebras of degree n and that their trace forms are not iso-
morphic (since the signatures differ by theorem 3). If k is a global field , the
condition (3) simply expresses that TA and TB are isomorphic if and only if it
is true locally everywhere (using the fact that these forms are automatically
kp-isomorphic for all complex primes).

B. Application to the study of the elements of Br2(k).

We are now interested in the following problem: if A is a central simple

algebra of even degree n, we know that
n

2
[A] ∈ Br2(k). Conversely, which

classes [B] ∈ Br2(k) can be written [B] =
n

2
[A], where A is a central simple

algebra of degree n ?
If k is a local field or a global field of characteristic different from 2, the
answer is given by the following proposition:
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Proposition 2: Let k be a field of characteristic different from 2 and n ≥ 2
an even integer.

(1) If k is a local field, then for all [B] ∈ Br2(k) there exists a central

simple algebra A over k of degree n such that
n

2
[A] = [B].

(2) If k is a global field, then we have:

(i) If n ≡ 2 [4], then for all [B] ∈ Br2(k) there exists a central simple

algebra A over k of degree n such that
n

2
[A] = [B]

(ii) If n ≡ 0 [4], then for all [B] ∈ Br2(k), there exists a central simple

algebra A over k of degree n such that
n

2
[A] = [B] if and only if

[B]kp
= 0 for all real primes

Proof: If k is a local field, we can take A = Mn(k) if [B] = 0 and A is a
division algebra if [B] = (a, b) by the lemma. Now assume that k is a global
field. We can assume that B is a quaternion algebra (c, d)k. If n = 2m with
m odd, set A = Mm((c, d)k). So we can assume that n = 2m, where m is
even. If [B] = m[A], we have [B]kp

= m[A]kp
= 0 for all real primes since m

is even and [A]kp
= 0 or (−1,−1)kp

. Conversely, assume that [B]kp
= 0 for

all real primes. For each infinite prime p, set qp = TMn(kp). If p is a finite
prime, set qp = TAp

, where Ap = Mn(kp) if (c, d)kp
= 0 and Ap is a division

algebra otherwise. Then we get w2(qp) =
m(m− 1)

2
(−1,−1)kp

+ (c, d)kp
for

all primes. Indeed, this is true by assumption if p is real, it is trivial if p is
complex, and this is verified by choice of Ap and by the lemma if p is finite.

So we have w2(qp) = (α, β)kp
, where (α, β)k =

m(m− 1)

2
(−1,−1)k + (c, d)k.

Then by Hilbert’s reciprocity law, the number of primes p for which w2(qp) =

0 is finite and even. Since detqp = (−1)
n(n−1)

2 for all primes, there exists a
quadratic form q over k such that q ⊗ kp ' qp. By choice of qp and by
theorem 2, we have q ' TA where A is a central simple algebra over k of
degree n. Comparing Hasse-Witt invariants, we get m[A]kp

= (c, d)kp
for all

primes. Then we get m[A] = (c, d)k = [B] (It is a consequence of the Hasse
principle for the elements of Br(k). We refer to [CS] or [W] for more details
for example).

8



References

[B] Berhuy G. Autour des formes trace des algèbres cycliques. Preprint
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